# 2021年度 技術交流助成 成果報告(日本留学)

2022 年 3 月 30 日 氏名 Fatma Rashed



留 学 先:東京医科歯科大学
大学院医歯学総合研究科 口腔基礎工学分野
受入先担当者:青木 和広
留 学 期 間:2020年7月1日~ 2021年12月31日

1. 留学中に実施した研究テーマ 1. Research themes conducted while studying abroad

Title

"Development of cell-membrane protein-mapping technique for quick screening of novel bone anabolic reagents in treating tumor-induced bone destruction."

Scope and purpose

An atomic force microscope is mostly used as a force sensor or mechanical mapping. However, we will use it as a biological simulation tool. In this mode, we hypothesize that the stimulation of a restricted area, using an AFM probe with a ligand, on the cell membrane receptor could be enough to initiate the osteoblast differentiation. We will compare our results to the conventional in-vitro stimulation using stimulation media with the ligand to search for the most appropriate condition/ ligand morphology that can stimulate osteoblast differentiation most efficiently.

Proposed mechanism:

1. The peptide-modified probe will be cyclically approached and retracted from the cell surface.

2. While monitoring the variation of the force concerning the tip-sample distance.

3. Then, on the binding of the proper peptide to the RANKL on the osteoblast surface, the induction of the osteoblast differentiation cascade is monitored.

## 留学期間中の研究成果 2. Research results during the study abroad period

<u>First</u>

We found that mature osteoclasts release RANK-expressing extracellular vesicles, which

interact with the RANKL on osteoblasts that functions as a coupling signal acceptor. In other words, RANKL works as a receptor on osteoblast to stimulate bone formation through <u>reverse</u> <u>signaling</u> that can be a potential pharmacological target to recover the bone remodeling balance between bone formation and bone resorption. (**Rashed, F.** et al. First author (2021) The Effects of Receptor Activator of NF-KB Ligand-Binding Peptides on Bone Resorption and Bone Formation. *Frontiers in Cell and Developmental Biology*, 9)

### <u>Second</u>

Even though recent experiments have revealed that the created RANK liposome does not have a function as RANK that cannot suppress RANKL-induced osteoclast formation, there is a possibility to develop a bone formation promoting agent using RANK-containing proteoliposomes (RANK liposomes). We aim to confirm the RANK-liposome work as a ligand to bind to RANK to stimulate reverse signaling. Since the function and structure of proteins are known to be related, it is necessary to acquire a suitable three-dimensional structure for RANK exosome to work physiologically.

#### Third

We used Hight speed-AFM to reveal the 3-dimensional structure of 1,2-dioleoyl-snglycerol-3-phosphocholine (DOPC) liposomes, RANK-Fc, and RANK liposomes. AFM observation revealed that the DOPC liposomes formed a supported lipid bilayer (SLB) of about 3 nm in height on the silicon substrate. The RANK liposomes also formed SLB of about 3 nm in height, and particles of about 112 nm in diameter were observed. Since RANK-Fc was about 55 nm in diameter, these observations suggest that the particles with a diameter of 112 nm were aggregated RANK molecules. Taken together, the reason why RANK liposomes did not work as a RANKL-antagonist could be due to inappropriate topology, which could not bind to RANKL.

## 2. 今後の研究計画 3. Future research plan

<u>-Force mapping</u>: technique will be used using AFM in real-time *in vivo* to clarify the localization and the quantity of the membrane-bound RANKL on the surface of osteoblasts using a cantilever AFM tip modified by DH01, a novel RANKL-binding peptide.

<u>- Utilizing Mirabody</u>: By using, Random non-standard Peptides Integrated Discovery (RaPID) system with collaboration with Prof. Hiroaki Suga, the University of Tokyo, to find out a peptide drug candidate with high affinity to the target protein and grafting of an Fc fragment into this high-affinity peptide (Mirabody) then testing them *in-vitro* to develop the most efficient RANKL-binding peptide in the activation of reverse signaling and bone formation.

- Chimera mice: Generate an extracellular human/ intracellular mice RANKL knock-in

chimera mouse to test the Mirabody (DH01-grafted Fc protein) *in vivo* since DH01 binds only to the human RANKL, not to the mice RANKL.

- <u>Osteopenic model mice</u>: Test a new peptide on an osteopenic mice model, which we recently established. The bone mineral density of distal femurs was significantly reduced by the oral bacteria (*Streptococcus mutans*) intravenous inoculation. (Hirohashi, Y., Kamijo, S., Khan, M., Ikeda, M., Oki, M., Matin, K., **Rashed, F.,** & Aoki, K. (2021). Tetracycline, an Appropriate Reagent for Measuring Bone-Formation Activity in the Murine Model of the *Streptococcus mutans*-Induced Bone Loss. *Frontiers in cellular and infection microbiology*, *11*).

3. その他と謝辞(日本での生活・交流の様子など)4. Others and acknowledgments (life and exchanges in Japan, etc.)

I attended several practical sessions with the undergraduate students, such as using image-J Software, calculating different doses of different anesthesia (inhalational and injection) for experimental animals (mice and rats).

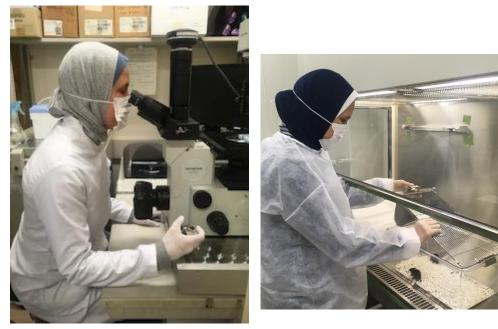
Every Thursday morning at 8 am, the research team meeting is held in the meeting room, and one member is asked to present a presentation. I made several presentations, the first one was about my research experience in Egypt, and the following one was a summary of a research paper.

I learned how to do several tissue-culture experiments on the effect of different peptide on osteoclasts activation, I learned to use the micro-CT and the pQCT machine and the fluorescent microscope, I also learned how to make frozen histology and methyl methacrylate tissue sections.

I observed an animal experiment on testing different scaffolds on a calvaria defect of mice in the TMDU animal center and how to make life micro-CT images.

## Cultural activities:

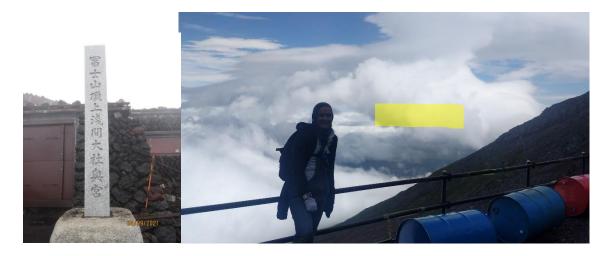
The first thing I did was visit the famous Shibuya crossing and the Hachiko dog, and I ate sushi from a sushi belt bar. Then I saw the Panasonic and sewage museum and the different shopping malls at the Odaiba district. The next weekend, we went to a classical music concert and the anime museum in Suginami City. I went to the Tokyo metropolitan building observatory in Shinjuku and then to the ice skating ring in the Roppongi area. I visited Okutama lake and Tama lake amongst many mountains. I climbed Mount Fuji in September. I also visited Kamakura city and walked around Minato city and visited Tokyo tower in addition to many other touristic famous monuments. I participated two days as a volunteer for Tokyo Olympics, the Tokyo marathon, and several charity activities in Tokyo.


※最後に留学中に技術交流を行っている様子等の写真 2~3 枚ありましたら、簡単なコメントを添えて、挿入してください。\* Finally, if you have a few photos of technical exchanges while studying abroad, please insert them with a brief comment.

# List of photos

1. Group photo of the research team in Professor Aoki's lab.




2. Working at the Lab.



3. My name on the door.

| 分野                                                     | 役職   | J3-3780 FAX:I<br>氏名 |
|--------------------------------------------------------|------|---------------------|
| 口腔基礎工学分野<br>Basic Oral Health<br>Engineering<br>(bhoe) | 教授   | 青木 和広               |
|                                                        |      | Kazuhiro Aoki       |
|                                                        | 准教授  | 大木 明子               |
|                                                        |      | Meiko Oki           |
|                                                        | 助教   | 上條 真吾               |
|                                                        |      | Shingo Kamijo       |
|                                                        | 院2年  | 中村 聡倭               |
|                                                        |      | Satowa Nakamura     |
|                                                        |      | 廣橋 優奈               |
|                                                        |      | Yuna Hirohashi      |
|                                                        | 院1年  | 清水 優里               |
|                                                        |      | Yuri Shimizu        |
|                                                        |      | 謝倉右                 |
|                                                        | 非常勤  | Masud Khan          |
|                                                        | 博PD  | 大河原 久実              |
|                                                        | 博自治医 | 小澤 通子               |
|                                                        | 博PD  | 松野 瞳                |
|                                                        | ポスドク | Fatma Rashed        |
|                                                        | 非常勤  | 天野 均                |

4. Climbing mount Fuji



5. At the practical session with undergraduate students



6. Volunteer at the cycling event in Tokyo 2020.



7. Distributing food to homeless people at Ueno Area.

